Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
Medicine (Baltimore) ; 103(18): e37991, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701321

RESUMO

Several observational studies have found that exposure to sunlight reduces the risk of colorectal cancer (CRC). However, sun exposure remains ambiguous in its relationship to CRC. We carried out a Mendelian randomization (MR) study to explore the potential associations between them. We examined the exposure to sunlight summary statistics of the UK Biobank Consortium using a 2-sample MR analysis. Using data from the FinnGen consortium, we derived summary statistics for CRC. We conducted our analysis with various methods, incorporating inverse variance weighted (IVW) along with 4 other approaches. A Cochran Q statistic was used to measure the heterogeneity of instrumental variables (IVs). We screened 133 single nucleotide polymorphisms (SNPs) (time spent outdoors in summer), 41 SNPs (time spent outdoors in winter), and 35 SNPs (frequency of solarium/sunlamp use) representing sunlight exposure for MR analysis. All selected SNPs had an F-statistic >20, indicating that IVs did not weakly bias the results. The summer outdoor activity trait exhibited significant heterogeneity (Cochran Q statistic = 183.795, P = .002 < 0.05), but we found no horizontal polymorphisms or significant heterogeneity for the other exposure traits. According to IVW estimates, no causal association exists between time spent outdoors in summer and CRC (Odds Ratio, OR = 0.735, 95% confidence interval, CI = 0.494-1.017, P = .128 > 0.017). No causal relationship existed between time spent outdoors in winter and CRC, as indicated by Bonferroni-corrected adjusted p-values. The OR was 0.877 with a 95% CI of 0.334-2.299, and the P value was .789, more significant than the significance threshold of 0.017. The solarium/sunlamp use frequency was not associated with CRC (OR = 1.567, 95%CI = 0.243-10.119, P = .637 > .017). Also, an IVW with random effects was applied to determine the causal relationship between summer outdoor time and CRC. No causal association between summer outdoor time and CRC was found (OR = 0.735, 95% CI = 0.494-1.017, P = .128 > .017). Additionally, 4 additional analyses yielded similar results. The findings of our study suggest that exposure to sunlight may reduce CRC risk, but the causal relationship remains unsolved. There is no evidence to suggest that exposure to sunlight prevents CRC. Randomized, controlled trials are needed to determine whether sunlight exposure protects against CRC.


Assuntos
Neoplasias Colorretais , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Luz Solar , Humanos , Luz Solar/efeitos adversos , Neoplasias Colorretais/genética , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/etiologia , Estações do Ano , Fatores de Risco
2.
Int J Neurosci ; : 1-11, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717334

RESUMO

The aim of the study was to investigate the correlation of serum changes and markers of brain injury (BI) in cerebrospinal fluid (CSF) with postoperative cognitive dysfunction (POCD) in patients with cerebral aneurysmal subarachnoid haemorrhage (aSAH). 120 patients diagnosed with aSAH were included. 3 months after surgery, these patients were divided into a normal cognition group and a cognitive dysfunction (CD) group relying on the Montreal Cognitive Assessment (MoCA) Scale. The correlations were analysed between the serological changes and the levels of BI markers, such as neurofilament-light (NF-L) protein, Ubiquitin C-terminal hydrolase L1(UCH-L1), Glial Fibrillary Acidic Protein (GFAP), and neuron specific enolase (NSE) in patients after surgery. Hunt-Hess grading standard was employed to determine the severity of aSAH in patients. The mean values of NF-L, UCH-L1, GFAP, and NSE were (8.2 ± 4.3) pg/mL, (0.7 ± 0.3) ng/mL, (2.2 ± 0.4) ng/mL, and (48.5 ± 10.9) ng/mL in patients with severe aSAH, which were remarkably higher than those in patients with mild aSAH [(3.5 ± 0.7) pg/mL, (0.5 ± 0.2) ng/mL, (1.3 ± 0.7) ng/mL, (30.7 ± 8.2) ng/mL]. The sensitivity, specificity, and accuracy of the combined prediction of four detections for POCD were 90.80%, 84.20%, and 82.80%, respectively, which were greatly higher than those of four independent predictions (P < 0.05). The combined prediction effect of the four items, with the area under the curve (AUC) of 0.938 and the 95% confidence interval (CI) of 0.851-0.926. BI markers NF-L, UCH-L1, GFAP, and NSE could be utilized as predictors of POCD in patients with aSAH, deserving a reference value.

3.
Biomed Pharmacother ; 175: 116652, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38692061

RESUMO

Allogeneic hematopoietic stem cell transplantation (aHSCT) is utilized as a potential curative treatment for various hematologic malignancies. However, graft-versus-host disease (GVHD) post-aHSCT is a severe complication that significantly impacts patients' quality of life and overall survival, becoming a major cause of non-relapse mortality. In recent years, the association between epigenetics and GVHD has garnered increasing attention. Epigenetics focuses on studying mechanisms that affect gene expression without altering DNA sequences, primarily including DNA methylation, histone modifications, non-coding RNAs (ncRNAs) regulation, and RNA modifications. This review summarizes the role of epigenetic regulation in the pathogenesis of GVHD, with a focus on DNA methylation, histone modifications, ncRNA, RNA modifications and their involvement and applications in the occurrence and development of GVHD. It also highlights advancements in relevant diagnostic markers and drugs, aiming to provide new insights for the clinical diagnosis and treatment of GVHD.

4.
Protein Cell ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721703

RESUMO

The maintenance of hematopoietic stem cells (HSCs) is a complex process involving numerous cell-extrinsic and -intrinsic regulators. The first member of the cyclin-dependent kinase family of inhibitors to be identified, p21, has been reported to perform a wide range of critical biological functions, including cell cycle regulation, transcription, differentiation, and so on. Given the previous inconsistent results regarding the functions of p21 in HSCs in a p21-knockout mouse model, we employed p21-tdTomato (tdT) mice to further elucidate its role in HSCs during homeostasis. The results showed that p21-tdT+ HSCs exhibited increased self-renewal capacity compared to p21-tdT- HSCs. Zbtb18, a transcriptional repressor, was upregulated in p21-tdT+ HSCs, and its knockdown significantly impaired the reconstitution capability of HSCs. Furthermore, p21 interacted with ZBTB18 to co-repress the expression of cKit in HSCs and thus regulated the self-renewal of HSCs. Our data provide novel insights into the physiological role and mechanisms of p21 in HSCs during homeostasis independent of its conventional role as a cell cycle inhibitor.

5.
Nat Commun ; 15(1): 3178, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609378

RESUMO

Chemo-immunotherapy combinations have been regarded as one of the most practical ways to improve immunotherapy response in cancer patients. In this study, we integrate the transcriptomics data from anti-PD-1-treated tumors and compound-treated cancer cell lines to systematically screen for chemo-immunotherapy synergisms in silico. Through analyzing anti-PD-1 induced expression changes in patient tumors, we develop a shift ability score to measure if a chemotherapy or a small molecule inhibitor treatment can shift anti-PD-1 resistance in tumor cells. By applying shift ability analysis to 41,321 compounds and 16,853 shRNA treated cancer cell lines transcriptomic data, we characterize the landscape of chemo-immunotherapy synergism and experimentally validated a mitochondrial RNA-dependent mechanism for drug-induced immune activation in tumor. Our study represents an effort to mechanistically characterize chemo-immunotherapy synergism and will facilitate future pre-clinical and clinical studies.


Assuntos
Imunoterapia , Neoplasias , Humanos , Quimioterapia Combinada , Linhagem Celular , Perfilação da Expressão Gênica , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
Blood ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657191

RESUMO

Hematopoietic differentiation is controlled by intrinsic regulators and the extrinsic hematopoietic niche. Activating transcription factor 4 (ATF4) plays a crucial role in the function of fetal and adult hematopoietic stem cell maintenance; however, the precise function of ATF4 in the bone marrow niche and the mechanism by which ATF4 regulates adult hematopoiesis remain largely unknown. Here, we employ four cell-type-specific mouse Cre lines to achieve conditional knockout of Atf4 in Cdh5+ endothelial cells, Prx1+ bone marrow stromal cells, Osx+ osteo-progenitor cells, and Mx1+ hematopoietic cells, and uncover the role of Atf4 in niche cells and hematopoiesis. Intriguingly, depletion of Atf4 in niche cells does not affect hematopoiesis; however, Atf4-deficient hematopoietic cells exhibit erythroid differentiation defects, leading to hypoplastic anemia. Mechanistically, ATF4 mediates direct regulation of Rps19bp1 transcription, which is, in turn, involved in 40S ribosomal subunit assembly to coordinate ribosome biogenesis and promote erythropoiesis. Finally, we demonstrate that under conditions of 5-fluorouracil-induced stress, Atf4 depletion impedes the recovery of hematopoietic lineages, which requires efficient ribosome biogenesis. Taken together, our findings highlight the indispensable role of the ATF4-RPS19BP1 axis in the regulation of erythropoiesis.

7.
Int J Surg ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573134

RESUMO

BACKGROUND: Sleeve gastrectomy (SG) is known to alleviate non-alcoholic fatty liver disease (NAFLD) and restore liver function; however, its underlying mechanism remains unclear. METHODS: We investigated the effect of SG on the metabolic phenotype of diet-induced obese (DIO) mice. Postoperative stained liver images were analyzed to determine the hepatocyte proliferation phenotype. Single-cell RNA sequencing was used to characterize the regeneration signals of the liver after SG in DIO mice, and qRT PCR was performed to verify the above results. We employed Olink proteomics to capture serum element changes and investigated the role of Yes1 protein in liver regeneration and carcinogenesis through the Hippo-YAP pathway. DIO mice were treatment with YAP inhibitor verteporfin after SG mice to clarify whether SG-induced liver regeneration is related to the YAP signaling pathway. RESULTS: SG significantly reduced NAFLD-associated dysfunction in hepatocytes and replaced them with fully functional hepatocytes, which have a high regenerative capacity across the entire liver. SG also enhanced the hepatic regenerative capacity, as demonstrated by SG combined with hepatic lobectomy in healthy mice. Yes1 protein was identified as the signaling molecule most closely related to classical regeneration signals. Our study showed that SG-enhanced proliferation and improved metabolism did not depend on YAP signaling. CONCLUSION: SG can enhance hepatic regenerative capacity and improve liver metabolism. This study provides a better understanding of the mechanisms underlying SG-induced metabolic improvements.

8.
Int J Cardiol ; : 132029, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583590

RESUMO

BACKGROUND: Programmed cell death 1 (PD-1) inhibitors can induce various adverse reactions associated with immunity, of which cardiotoxicity is a serious complication. Limited research exists on the link between PD-1 inhibitor use and pericardial effusion (PE) occurrence and outcomes. METHODS: We conducted a retrospective study at the First Affiliated Hospital of Xi'an Jiaotong University from 2017 to 2019, comparing cancer patients who developed PE within 2 years after PD-1 inhibitor therapy to those who did not. Our primary outcome was the all-cause mortality rate at one year. We applied the Kaplan-Meier method for survival analysis. Multivariate logistic regression was utilized to identify PE risk factors, adjusting for potential confounders. RESULTS: A total of 91 patients were finally included, of whom 39 patients had PE. Compared to non-PE group, one-year all-cause mortality was nearly 5 times higher in PE group (64.10% vs. 13.46%, P < 0.001). Patients who developed PE within 2 years of taking PD-1 inhibitors were significantly associated with increased all-cause mortality compared with those who did not (HR: 6.26, 95%CI: 2.70-14.53, P < 0.001). Multivariable logistic regression showed that use of sintilimab (OR: 14.568, 95%CI: 3.431-61.857, P < 0.001), history of lung cancer (OR: 15.360, 95%CI: 3.276-72.017, P = 0.001), and history of hypocalcemia (OR: 7.076, 95%CI: 1.879-26.649, P = 0.004) were independent risk factors of PE development in patients received PD-1 inhibitors therapy. CONCLUSIONS: In cancer patients receiving PD-1 inhibitors, PE was associated with higher one-year mortality. Use of sintilimab, and history of lung cancer or hypocalcemia were linked to PE occurrence.

9.
Sensors (Basel) ; 24(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38676120

RESUMO

Concrete-filled steel tube (CFST) members have been widely used in civil engineering due to their advanced mechanical properties. However, internal defects such as the concrete core voids and interface debonding in CFST structures are likely to weaken their load-carrying capacity and stiffness, which affects the safety and serviceability. Visualizing the inner defects of the concrete cores in CFST members is a critical requirement and a challenging task due to the obvious difference in the material mechanical parameters of the concrete core and steel tube in CFST members. In this study, a curved ray theory-based travel time tomography (TTT) with a least square iterative linear inversion algorithm is first introduced to quantitatively identify and visualize the sizes and positions of the concrete core voids in CFST members. Secondly, a numerical investigation of the influence of different parameters on the inversion algorithm for the defect imaging of CFST members, including the effects of the model weighting matrix, weighting factor and grid size on the void's imaging quality and accuracy, is carried out. Finally, an experimental study on six CFST specimens with mimicked concrete core void defects is performed in a laboratory and the mimicked defects are visualized. The results demonstrate that TTT can identify the sizes and positions of the concrete core void defects in CFST members efficiently with the use of optimal parameters.

10.
World J Surg Oncol ; 22(1): 116, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689335

RESUMO

PURPOSE: The objective of this paper is to offer a thorough examination of the clinical presentations, etiology, and treatment strategies associated with perivascular epithelioid cell tumors (PEComas). METHODS: This retrospective study examined the comprehensive archival data of PEComa cases diagnosed at Beijing Hospital from 2015 to 2023. The pathology slides of all patients were thoroughly reassessed by two experienced pathologists. A thorough retrospective analysis was undertaken, incorporating clinicopathological data including gender, age at diagnosis, initial clinical manifestations, signs, disease onset site, tumor markers, imaging findings, therapeutic modalities, pathological features, immunohistochemical profiles, treatment responses, and prognostic indicators. Patients were evaluated for disease severity according to established pathological classification criteria and were followed up until the designated analysis cut-off date. In instances where patients were unable to be monitored on-site, they were contacted via telephone for postoperative follow-up inquiries. RESULTS: This study included 11 patients with ages ranging from 17 to 66 years old, presenting with the disease in multiple anatomical sites, including the retroperitoneum (2/11), liver (4/11), kidney (4/11), lung (1/11), and broad ligament of the uterus (1/11). Most patients presented with non-specific clinical symptoms and were subsequently diagnosed with space-occupying lesions upon physical examination. The tumor demonstrated progressive growth and enlargement, which could result in compression of neighboring organs. Preoperative imaging alone is insufficient for a definitive diagnosis of PEComa, but MRI can provide an initial evaluation of the tumor's potential malignancy. Molecular marker testing specific to PEComa, such as HMB-45 (90.0%), SMA (81.8%), Melan-A (90.9%), vimentin (90.9%), and Desmin (36.3%), was conducted on all patients. No adjuvant therapies were administered postoperatively. Upon analysis, no instances of relapse at the primary site or the development of new tumors at other sites were observed. Regular imaging reviews of three patients with malignant PEComa post-surgery showed no evidence of recurrence. CONCLUSIONS: The clinical presentation, tumor biomarkers, and imaging characteristics of PEComa lack specificity, necessitating dependence on pathology and immunohistochemistry for precise diagnosis. The mainstay of treatment consists of surgical resection, with patients typically experiencing a favorable prognosis.


Assuntos
Neoplasias de Células Epitelioides Perivasculares , Humanos , Neoplasias de Células Epitelioides Perivasculares/patologia , Neoplasias de Células Epitelioides Perivasculares/cirurgia , Neoplasias de Células Epitelioides Perivasculares/diagnóstico , Neoplasias de Células Epitelioides Perivasculares/metabolismo , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Masculino , Adulto , Idoso , Adolescente , Adulto Jovem , Prognóstico , Seguimentos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/cirurgia , Neoplasias Renais/diagnóstico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Neoplasias Retroperitoneais/patologia , Neoplasias Retroperitoneais/cirurgia , Neoplasias Retroperitoneais/diagnóstico , Neoplasias Retroperitoneais/diagnóstico por imagem
11.
Nat Cancer ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609488

RESUMO

Tumor-specific T cells are crucial in anti-tumor immunity and act as targets for cancer immunotherapies. However, these cells are numerically scarce and functionally exhausted in the tumor microenvironment (TME), leading to inefficacious immunotherapies in most patients with cancer. By contrast, emerging evidence suggested that tumor-irrelevant bystander T (TBYS) cells are abundant and preserve functional memory properties in the TME. To leverage TBYS cells in the TME to eliminate tumor cells, we engineered oncolytic virus (OV) encoding TBYS epitopes (OV-BYTE) to redirect the antigen specificity of tumor cells to pre-existing TBYS cells, leading to effective tumor inhibition in multiple preclinical models. Mechanistically, OV-BYTE induced epitope spreading of tumor antigens to elicit more diverse tumor-specific T cell responses. Remarkably, the OV-BYTE strategy targeting human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory efficiently inhibited tumor progression in a human tumor cell-derived xenograft model, providing important insights into the improvement of cancer immunotherapies in a large population with a history of SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) vaccination.

12.
Haematologica ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450521

RESUMO

Small extracellular vesicles (sEVs) transfer cargos between cells and participate in various physiological and pathological processes through their autocrine and paracrine effects. However, the pathological mechanisms employed by sEV-encapsulated microRNAs (miRNAs) in acute myeloid leukemia (AML) are still obscure. In this study, we aimed to investigate the effects of AML cells-derived sEVs (AML-sEVs) on AML cells and delineate the underlying mechanisms. We initially used high-throughput sequencing to identify miR-221-3p as the miRNA prominently enriched in AML-sEVs. Our findings revealed that miR-221-3p promoted AML cell proliferation and leukemogenesis by accelerating cell cycle entry and inhibiting apoptosis. Furthermore, Gbp2 was confirmed as a target gene of miR-221-3p by dual luciferase reporter assays and rescue experiments. Additionally, AML-sEVs impaired the clonogenicity, particularly the erythroid differentiation ability, of hematopoietic stem and progenitor cells. Taken together, our findings reveal how sEVs-delivered miRNAs contribute to AML pathogenesis, which can be exploited as a potential therapeutic target to attenuate AML progression.

13.
Gastroenterology ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492894

RESUMO

BACKGROUND & AIMS: Because pancreatic cancer responds poorly to chemotherapy and immunotherapy, it is necessary to identify novel targets and compounds to overcome resistance to treatment. METHODS: This study analyzed genomic single nucleotide polymorphism sequencing, single-cell RNA sequencing, and spatial transcriptomics. Ehf-knockout mice, KPC (LSL-KrasG12D/+, LSL-Trp53R172H/+ and Pdx1-Cre) mice, CD45.1+ BALB/C nude mice, and CD34+ humanized mice were also used as subjects. Multiplexed immunohistochemistry and flow cytometry were performed to investigate the proportion of tumor-infiltrated C-X-C motif chemokine receptor 2 (CXCR2)+ neutrophils. In addition, multiplexed cytokines assays and chromatin immunoprecipitation assays were used to examine the mechanism. RESULTS: The TP53 mutation-mediated loss of tumoral EHF increased the recruitment of CXCR2+ neutrophils, modulated their spatial distribution, and further induced chemo- and immunotherapy resistance in clinical cohorts and preclinical syngeneic mice models. Mechanistically, EHF deficiency induced C-X-C motif chemokine ligand 1 (CXCL1) transcription to enhance in vitro and in vivo CXCR2+ neutrophils migration. Moreover, CXCL1 or CXCR2 blockade completely abolished the effect, indicating that EHF regulated CXCR2+ neutrophils migration in a CXCL1-CXCR2-dependent manner. The depletion of CXCR2+ neutrophils also blocked the in vivo effects of EHF deficiency on chemotherapy and immunotherapy resistance. The single-cell RNA-sequencing results of PDAC treated with Nifurtimox highlighted the therapeutic significance of Nifurtimox by elevating the expression of tumoral EHF and decreasing the weightage of CXCL1-CXCR2 pathway within the microenvironment. Importantly, by simultaneously inhibiting the JAK1/STAT1 pathway, it could significantly suppress the recruitment and function of CXCR2+ neutrophils, further sensitizing PDAC to chemotherapy and immunotherapies. CONCLUSIONS: The study demonstrated the role of EHF in the recruitment of CXCR2+ neutrophils and the promising role of Nifurtimox in sensitizing pancreatic cancer to chemotherapy and immunotherapy.

14.
Sci Total Environ ; 923: 171531, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458449

RESUMO

A novel lanthanide metal-organic-gel (MOG)-derived material/nitrogen-doped graphdiyne (Tb-Ru-MOG/CeO2/N-GDY) composite with a dual-source signal amplification strategy was prepared and used to construct a molecularly imprinted sensor based on bifunctional monomers for the detection of imidacloprid (IMI) using electrochemiluminescence (ECL). In a green reaction environment, terbium (III) (Tb3+) can undergo multiple coordination reactions with 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine (Hcptpy) and tris(4,4'-dicarboxylicacid-2,2'-bipyridyl) ruthenium (II) dichloride (Ru(dcbpy)32+), and combine with ceria nanoparticles (CeO2 NPs) to form Tb-Ru-MOG/CeO2. Within the Tb-Ru-MOG/CeO2 framework, energy transfer from the double ligands can sensitize the central Tb3+, triggering a distinct antenna effect and energy-transfer, and its polyporous configuration offered a nanoconfined space for Ce3+/Ce4+ to effectively catalyze coreactant radicals (S2O82-), leading to in-situ endogenous activation ECL reactions. The conductive N-GDY accelerated electron movement and increased the loading on the electrode surface, enhancing the exogenous excitation of the ECL signals. Leveraging the synergistic effect of the bifunctional monomer, the synthesized molecularly imprinted polymers (MIPs) ECL sensor demonstrated a wide detection range from 10 nM to 10,000 nM for IMI, with a limit of detection (LOD) of 1.37 nM, showcasing an innovative concept for the dual-source strategy of signal amplification in integrated ECL composites to analyze food and environmental hazards.

15.
Mater Today Bio ; 26: 101019, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516170

RESUMO

Nanotechnology for tumor diagnosis and optical therapy has attracted widespread interest due to its low toxicity and convenience but is severely limited due to uncontrollable tumor targeting. In this work, homologous cancer cell membrane-camouflaged multifunctional hybrid metal coordination nanoparticles (DRu/Gd@CM) were prepared for MRI-guided photodynamic therapy (PDT) and photothermal therapy (PTT) of tumors. Bimetallic coordination nanoparticles are composed of three functional modules: dopamine, Ru(dcbpy)3Cl2 and GdCl3, which are connected through 1,4-Bis[(1H-imidazole-1-yl)methyl]benzene (BIX). Their morphology can be easily controlled by adjusting the ratio of precursors. Optimistically, the intrinsic properties of the precursors, including the photothermal properties of polydopamine (PDA), the magnetic resonance (MR) response of Gd3+, and the singlet oxygen generation of Ru(dcbpy)3Cl2, are well preserved in the hybrid metal nanoparticles. Furthermore, the targeting of homologous cancer cell membranes enables these coordinated nanoparticles to precisely target tumor cells. The MR imaging capabilities and the combination of PDT and PTT were demonstrated in in vitro experiments. In addition, in vivo experiments indicated that the nanoplatform showed excellent tumor accumulation and therapeutic effects on mice with subcutaneous tumors, and could effectively eliminate tumors within 14 days. Therefore, it expanded the new horizon for the preparation of modular nanoplatform and imaging-guided optical therapy of tumors.

16.
J Pharm Sci ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492845

RESUMO

Hyperthermia can be integrated with tumor-killing chemotherapy, radiotherapy and immunotherapy to give rise to an anti-tumor response. To this end, a nano-delivery system is built, which can connect hyperthermia and immunotherapy. On this basis, the impact of such a combination on the immune function of dendritic cells (DCs) is explored. The core of this system is the photothermal material gold nanorod (GNR), and its surface is covered with a silica shell. Additionally, it also forms a hollow mesoporous structure using the thermal etching approach, followed by modification of targeted molecule folic acid (FA) on its surface, and eventually forms a hollow mesoporous silica gold nanorod (GNR@void@mSiO2) modified by FA. GNR@void@mSiO2-PEG-FA (GVS-FA) performs well in photothermal properties, drug carriage and release and tumor targeting performance. Furthermore, the thermotherapy of tumor cells through in vitro NIR irradiation can directly kill tumor cells by inhibiting proliferation and inducing apoptosis. GVS-FA loaded with imiquimod (R837) can be used as a adjuvant to enhance the immune function of DCs through hyperthermia.

17.
J Nanobiotechnology ; 22(1): 88, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431629

RESUMO

Functional metal doping endows fluorescent carbon dots with richer physical and chemical properties, greatly expanding their potential in the biomedical field. Nonetheless, fabricating carbon dots with integrated functionality for diagnostic and therapeutic modalities remains challenging. Herein, we develop a simple strategy to prepare Gd/Ru bimetallic doped fluorescent carbon dots (Gd/Ru-CDs) via a one-step microwave-assisted method with Ru(dcbpy)3Cl2, citric acid, polyethyleneimine, and GdCl3 as precursors. Multiple techniques were employed to characterize the morphology and properties of the obtained carbon dots. The Gd/Ru-CDs are high mono-dispersity, uniform spherical nanoparticles with an average diameter of 4.2 nm. Moreover, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) confirmed the composition and surface properties of the carbon dots. In particular, the successful doping of Gd/Ru enables the carbon dots not only show considerable magnetic resonance imaging (MRI) performance but also obtain better fluorescence (FL) properties, especially in the red emission area. More impressively, it has low cytotoxicity, excellent biocompatibility, and efficient reactive oxygen species (ROS) generation ability, making it an effective imaging-guided tumor treatment reagent. In vivo experiments have revealed that Gd/Ru-CDs can achieve light-induced tumor suppression and non-invasive fluorescence/magnetic resonance bimodal imaging reagents to monitor the treatment process of mouse tumor models. Thus, this simple and efficient carbon dot manufacturing strategy by doping functional metals has expanded avenues for the development and application of multifunctional all-in-one theranostics.


Assuntos
Carbono , Pontos Quânticos , Animais , Camundongos , Carbono/química , Pontos Quânticos/química , Espectroscopia Fotoeletrônica , Corantes Fluorescentes/química , Imageamento por Ressonância Magnética
18.
J Biol Chem ; 300(3): 105707, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309505

RESUMO

Liver cancer is notoriously refractory to conventional therapeutics. Tumor progression is governed by the interplay between tumor-promoting genes and tumor-suppressor genes. BRD4, an acetyl lysine-binding protein, is overexpressed in many cancer types, which promotes activation of a pro-tumor gene network. But the underlying mechanism for BRD4 overexpression remains incompletely understood. In addition, understanding the regulatory mechanism of BRD4 protein level will shed insight into BRD4-targeting therapeutics. In this study, we investigated the potential relation between BRD4 protein level and P53, the most frequently dysregulated tumor suppressor. By analyzing the TCGA datasets, we first identify a strong negative correlation between protein levels of P53 and BRD4 in liver cancer. Further investigation shows that P53 promotes BRD4 protein degradation. Mechanistically, P53 indirectly represses the transcription of USP1, a deubiquitinase, through the P21-RB1 axis. USP1 itself is also overexpressed in liver cancer and we show USP1 deubiquitinates BRD4 in vivo and in vitro, which increases BRD4 stability. With cell proliferation assays and xenograft model, we show the pro-tumor role of USP1 is partially mediated by BRD4. With functional transcriptomic analysis, we find the USP1-BRD4 axis upholds expression of a group of cancer-related genes. In summary, we identify a functional P53-P21-RB1-USP1-BRD4 axis in liver cancer.


Assuntos
Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , Neoplasias Hepáticas , Proteínas Nucleares , Fatores de Transcrição , Proteases Específicas de Ubiquitina , Humanos , Proteínas que Contêm Bromodomínio/genética , Proteínas que Contêm Bromodomínio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Genes Supressores de Tumor , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
19.
Birth Defects Res ; 116(2): e2318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38362594

RESUMO

BACKGROUND: Arginase 1 (Arg1) encodes a key enzyme that catalyzes the metabolism of arginine to ornithine and urea. In our recent study, we found that knockdown of Arg1 in the lungs of fetal mice induces apoptosis of epithelial cells and dramatically delays initiation of labor. As the most abundant internal mRNA modification, N6 -methyladenosine (m6 A) has been found to play important roles in lung development and cellular differentiation. However, if the knockdown of Arg1 affects the RNA m6A modification in fetal lungs remains unknown. METHODS: In the current study, the RNA m6A levels and the expression of RNA m6A related enzymes were validated in 13.0 dpc fetal lungs that Arg1 was knocked down by adeno-associated virus carrying Arg1-shRNA, using western blot, immunofluorescence, and RT-qPCR. RESULTS: No statistical differences were found in the expression of methyltransferase, demethylases, and binding proteins in the fetal lungs between AAV-shArg1-injected mice and AAV-2/9-injected mice. Besides, there is no significant change of overall RNA m6A level in fetal lungs from AAV-shArg1-injected mice, compared with that from AAV-2/9-injected mice. CONCLUSIONS: These results indicate that arginase 1 does not affect RNA m6A methylation in mouse fetal lung, and the mechanisms other than RNA m6A modification underlying the effects of Arg1 knockdown on the fetal lung development and their interaction with labor initiation need to be further explored.


Assuntos
Arginase , Metilação de RNA , Camundongos , Animais , Arginase/genética , Arginase/metabolismo , Pulmão/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , RNA/metabolismo
20.
Mol Carcinog ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411361

RESUMO

Heat shock protein 90 (Hsp90) is a tumor marker that accelerates cancer growth by disrupting protein homeostasis. However, concerns such as low clinical efficacy and drug resistance continue to be obstacles to the successful marketing of Hsp90 inhibitors. The cytoprotective function of autophagy has been identified as one of the mechanisms by which tumor cells gain resistance to chemotherapy. JD-02 was identified as a new Hsp90 inhibitor that suppressed colorectal cancer (CRC) growth by lowering client protein levels in vivo and in vitro. We found that JD-02 increased cellular autophagy, which inhibited apoptosis. JD-02 enhanced cytoprotective autophagy and regulated apoptotic suppression by increasing intracellular reactive oxygen species and inhibiting SRC protein levels, as demonstrated by quantitative proteomics, bioinformatic analysis, western blotting, and flow cytometry. This effect was reversed by autophagy inhibition. Therefore, due to the synergistic effects of Hsp90 and autophagy inhibitors in efficiently activating apoptotic pathways, they could potentially serve as promising therapeutic options for CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA